Последовательности и прогрессии на Ломоносове
Ошибка.
Попробуйте повторить позже
Найдите первый член арифметической прогрессии
если а произведение чисел
равно их среднему арифметическому.
Источники:
Подсказка 1
Давайте попробуем понять, что нам даёт условие a_13=0, не просто так же его нам дали. Попробуйте вспомнить про характеристическое свойство арифметической прогрессии. Что тогда хорошее мы сразу поймём про члены прогрессии?
Подсказка 2
Точно, симметричные относительно a_13 члены будут в сумме давать 0. Отсюда мы сразу понимаем, чему на самом деле равно произведение чисел, данных в условии. Теперь поймём, а чем на самом деле является вторая последовательность из степеней 5?
Подсказка 3
Верно, это же нам самом деле геометрическая прогрессия. Обозначим тогда первое число за b, а знаменатель будет какой-то степенью пятёрки. Осталось только подставить это в последнее равенство, данное условием. То есть среднее арифметическое членов будет равно 5^(a_1)=b, откуда b сократится, и остаётся только решить оставшееся уравнение для q. Не забудьте, что q>0!
Пусть разность данной арифметической прогрессии равна Тогда на основе получаем
Тогда получается
Так как показатели степеней являются арифметической прогрессией, то числа образуют геометрическую прогрессию. Пусть , тогда
Функция в левой части монотонно возрастает при , поэтому может принимать значение не более, чем в одной точке. И легко видеть, что принимается это значение при
В итоге , откуда и
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!