Тема . Ломоносов

Последовательности и прогрессии на Ломоносове

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела ломоносов
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#80458

Про последовательность {a }
  n известно, что a =1,5
 1  и a = -1--
n   n2− 1  при n ∈ℕ,n> 1  . Существуют ли такие значения n  , что сумма первых n  членов этой последовательности отличается от 2,25 меньше, чем на 0,01? Если да, то найдите наименьшее из них.

Показать ответ и решение

Общая формула членов последовательности (кроме первого) может быть записана так (n≥ 2)  :

    --1--  1( -1--  --1-)
an = n2− 1 = 2 n− 1 − n+ 1

В результате сумма первых n  членов последовательности, кроме первого, принимает вид:

 [(    )  (     )  (     )  (     )  (     )
1  1− 1  +  1− 1 +  1 − 1 +  1 − 1 +  1 − 1 +
2     3(    2  4  ) 3 ( 5    4)  6(   5  7   )]
 + ...+  n-1− 3 −n-1− 1 + n−12 − 1n +  n−11 − n-1+1

После сокращений для суммы n  первых членов последовательности можно записать:

         [              ]        (        )
Sn = 1,5+ 1 1+ 1 −-1−-1-- = 2,25− 1  1+ --1-
        2    2  n   n+ 1        2  n  n+ 1

Пусть f(n)= 1(-1+ -1-)
     2 n   n+1 . Тогда поскольку f(n)  убывает и

       1( 1-- -1-)   1(-1-  -1-)  -1-
f(100)= 2  100 +101  < 2 100 + 100 =100
       1( 1-  1-)   1( 1-- -1-)   1--
 f(99)= 2  99 + 100  > 2  100 +100  = 100

искомое значение n  равно 100.

Ответ:

да, n= 100

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!