Многочлены на ММО
Ошибка.
Попробуйте повторить позже
Уравнение с целыми коэффициентами имеет четыре положительных корня с учетом кратности. Найдите
наименьшее возможное значение коэффициента
при этих условиях.
Подсказка 1
Смотрите, давайте выразим коэффициенты b и d через корни многочлена по теореме Виета! Ага, мы знаем, что они точно целые и не меньше единицы, но попробуем оценить b через d используя то, что они оба - какие-то выражения от корней многочлена.
Подсказка 2
Ага, давайте попробуем оценивать вот такое выражение — b/√d, так как если его записать, с точки значения корней мы получим красивое выражение. Как бы его оценить...
Подсказка 3
Вспомните неравенство о средних и примените для этих 6 слагаемых! Получим оценку b через √d. d у нас минимум 1, попробуем с таким расчетом придумать пример для b!
По условию уравнение имеет корни, обозначим их
По теореме Виета и
Корни положительны, так что
(коэффициенты целые). По
неравенству между средним арифметическим и средним геометрическим:
В неравенстве достигается равенство () для уравнения
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!