Задачи на исследование квадратичной функции
Ошибка.
Попробуйте повторить позже
Найдите наименьшее значение выражения
если — произвольная квадратичная функция, удовлетворяющая условию
и принимающая неотрицательные
значения при всех действительных
Источники:
Имеем
Тогда исходное уравнение принимает вид
Поскольку — произвольная квадратичная функция, принимающая неотрицательные значения при всех
действительных
то
Тогда
где
Рассмотрим функцию и найдем ее наименьшее значение при
при производная
равна
и, проходя через эту точку, меняет знак с «минуса» на «плюс», следовательно,
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!