Тема . Остатки и сравнения по модулю

Выбор модуля для доказательства делимости / простоты / степени

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела остатки и сравнения по модулю
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#133202

Существует ли непостоянный многочлен с целыми коэффициентами, значения которого во всех целых точках являются простыми числами?

Показать ответ и решение

Предположим, что такой многочлен существует. Обозначим его через P(x).  Тогда P (n)= p  для некоторого целого n  и простого p  (возьмём n  составным). Заметим, что тогда

P(n+ pk) ≡p P(n)≡p 0, ∀k∈ℕ.

Следовательно, P(n +pk)= p  для любого натурально k,  так как другого простого числа, которое делится на p,  не существует. В силу непостоянности многочлена, он не может принимать в бесконечном количестве точек одно значение. Противоречие.

Ответ:

нет

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!