Тема . Остатки и сравнения по модулю

Выбор модуля для доказательства делимости / простоты / степени

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела остатки и сравнения по модулю
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#90949

Докажите, что сумма квадратов пяти последовательных чисел не может быть квадратом целого числа.

Показать доказательство

Обозначим пять чисел через n− 2,n − 1,n,n+ 1,n+ 2.  Их сумма квадратов равна 5n2+ 10= 5(n2+ 2).  Предположим, что она является полным квадратом. Сумма делится на 5,  значит она обязана делиться и на 25.  Следовательно,  2
n + 2≡ 0 (mod 5),  откуда  2
n ≡ 3 (mod 5).  Осталось заметить, что квадрат не может давать остаток 3  при делении на 5.  В этом можно убедиться с помощью полного перебора остатков при делении на 5.  Пришли к противоречию.

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!