Муниципалка 10 - 11 класс
Ошибка.
Попробуйте повторить позже
Сумму где
– нечётное простое число, представили в виде несократимой обыкновенной дроби. Докажите, что
числитель этой дроби делится на число
без остатка.
Источники:
Подсказка 1
Зачастую, в таких задачах, с некоторыми суммами и/или последовательностями объектов, нужно разбивать числа на пары и смотреть на объекты из пары, так как нередко, по отдельности про числа ничего не скажешь, но вот при разбитии на пары появляется ряд свойств. Попробуйте разбить числа на пары и посмотреть на сумму в каждой.
Подсказка 2
Разобьем на пары 1/t и 1/(p - t). Их сумма будет равна p/t(p - t). Вынесем р из каждой такой суммы и получится, что наша сумма равна p * (…). Получается, мы решили задачу?
Подсказка 3
Нет, не совсем. Осталось понять, почему ничто из знаменателя не может сократить р. Ну это просто, ведь каждый множитель меньше р, а значит, взаимнопрост с ним(не забываем, что р - просто число). А вот теперь - мы точно решили задачу.
Всего слагаемых здесь из условия следует, что это чётное число. Тогда мы можем разбить слагаемые на пары: первое — с последним,
второе — с предпоследним и т. д. Получим
сумм вида
В итоге сумма из условия равна
и кратна ведь после приведения суммы дробей к общему знаменателю в знаменателе получится
Поскольку простое, знаменатель
не содержит множителя
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!