Смешанные уравнения и неравенства (тригонометрия, логарифмы, степени, модули, корни)
Ошибка.
Попробуйте повторить позже
Решите уравнение
Источники:
Областью определения функций, входящих в исходное уравнение, являются значения , при которых
Положим и
. Тогда, по формулам перехода от одного основания логарифма к другому
имеем
Далее, аналогично, и
. После этого исходное уравнение запишется так:
Перенося все члены из левой части уравнения в правую и выполняя стандартные преобразования, получаем
Поэтому решениями преобразованного уравнения являются все значения и
, удовлетворяющие хотя бы одному из равенств
,
или
, или
при условии (это относится только к первым двум равенствам)
.
Возвращаясь к исходному уравнению отсюда следует, что с учётом области определения, его решениями являются решения совокупности
Эта совокупность на области определения эквивалентна совокупности уравнений
Рассмотрим первое уравнение совокупности:
Это уравнение на области определения решений не имеет.
Рассмотрим второе уравнение совокупности:
Решения уравнения в область определения не входят. Решениями уравнения
являются
—
целое, т.е.
. При
кратном
такие
принадлежат области определения, при остальных значениях
-
нет.
Рассмотрим третье уравнение совокупности:
Решения уравнения в область определения не входят. Если
, то
, поэтому решения уравнения
в область определения также не входят.
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!