Олимпиада им. Эйлера
Ошибка.
Попробуйте повторить позже
На сторонах равностороннего треугольника
выбраны точки
соответственно так, что
Известно, что
Найдите сторону треугольника
Проведем в треугольнике среднюю линию
. Тогда
Кроме того, и
. Следовательно, треугольники
и
равны по стороне и двум углам. Положим
. Тогда
откуда и
.
Замечание. Используя подобие, можно обойтись без средней линии, сразу получив уравнение (*) из подобия треугольников и
по двум углам с коэффициентом
.
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!