Олимпиада им. Эйлера
Ошибка.
Попробуйте повторить позже
На стороне треугольника
выбрана точка
Биссектриса
пересекает отрезок
в точке
Оказалось, что
и
Чему равно отношение углов
и
треугольника?
Пусть прямая, проходящая через точку параллельно
пересекает прямые
и
в точках
и
соответственно. Из
подобия треугольников
и
имеем
откуда В силу параллельности прямых
и
имеем
откуда Кроме того, из равенства
следует, что
откуда
Таким образом, треугольники
и
равны по двум сторонам и углу между ними. Следовательно,
и
откуда и получаем ответ.
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!