Тема . Региональный этап ВсОШ и олимпиада им. Эйлера

Олимпиада им. Эйлера

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела региональный этап всош и олимпиада им. эйлера
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#74340

Дан выпуклый четырёхугольник ABSC.  На диагонали BC  выбрана точка P  так, что AP =CP > BP.  Точка Q  симметрична точке P  относительно середины диагонали BC,  а точка R  симметрична точке Q  относительно прямой AC.  Оказалось, что ∠SAB = ∠QAC  и ∠SBC = ∠BAC.  Докажите, что SA =SR.

Источники: Олимпиада Эйлера, 2019, ЗЭ, 4 задача(см. old.mccme.ru)

Показать доказательство

Отметим на отрезке AC  такую точку L,  что QL ∥AP.

PIC

Тогда треугольники AP C  и LQC  подобны и LQ= QC = BP.  Кроме того, BQ =P C = AP  и ∠APB = ∠LQB,  поэтому треугольники ABP  и BLQ  равны по двум сторонам и углу между ними. Следовательно, BA = BL.  Далее, ∠ALR = ∠ALQ  =    ∘
180 − ∠CLQ  =   ∘
180 − ∠ACB  = ∠CAB + ∠ABC  = ∠ABC + ∠SBC  = ∠ABS  и ∠BAS = ∠QAC = ∠LAR,  поэтому треугольники ABS  и ALR  подобны по двум углам, откуда AB ∕AL  = AS ∕AR.  Значит, треугольники ABL  и ASR  подобны по двум пропорциональным сторонам и углу между ними (∠SAR = ∠BAC  , поскольку ∠SAB = ∠QAC = ∠RAL  ), но так как AB =BL,  то AS = SR.

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!