Олимпиада им. Эйлера
Ошибка.
Попробуйте повторить позже
Сумма неотрицательных чисел и
равна 4. Докажите, что
Источники:
Подсказка 1
По условию нам дана только сумма четырех величин, но перед нами в неравенстве написаны произведения. Какое классическое неравенство позволяет нам оценить произведение относительно суммы?
Подсказка 2
Правильно, нам может помочь неравенство о средних для среднего арифметического и среднего геометрического. Подумайте, как можно оценить левую часть нашего неравенства через сумму a, b, c, d.
Подсказка 3
Давайте разобьем наше произведение на три попарных подкоренных √((ab+cd)(ac+bd)), √((ab+cd)(ad+bc)) и √((aс+bd)(ad+bc)). Теперь мы можем применить неравенство о средних для каждого из произведений и получить оценку сверху через известную нам сумму
Перемножая три полученных неравенства, получаем искомое.
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!