Олимпиада им. Эйлера
Ошибка.
Попробуйте повторить позже
Найдите наименьшее натуральное такое, что для некоторого натурального числа
большего
и некоторого натурального числа
выполнено равенство
Источники:
Подсказка 1
Обозначим за c сумму a и k, за d нод a и c, тогда есть представления a=da₁ и c=dc₁. Приведём дроби к общему знаменателю, чтобы выразить сумму. Что получаем?
Подсказка 2
Получаем 1/b равна дроби с числителем a₁+c₁ и знаменателем da₁c₁. Отсюда можно сделать вывод о делимости d на a₁+c₁,тогда d² больше либо равно a+c. Какую оценку на d можно получить?
Подсказка 3
Верно, поскольку a+c больше 10⁶, d больше либо равно 1001, соответственно и k больше либо равно 1001. Получили оценку, осталось построить пример.
Оценка. Положим и НОД
Тогда
и
Так как числа
и
взаимно просты,
должно делиться на
Поэтому
и
откуда
и
Пример.
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!