Тема . Заключительный этап ВсОШ

Закл (финал) 9 класс

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела заключительный этап всош
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#105155

Сумма положительных чисел a,b,c,d  равна 3.  Докажите неравенство:

-1  -1  -1  -1  ---1---
a2 +b2 + c2 + d2 ≤a2b2c2d2
Показать доказательство

Домножив доказываемое неравенство на a2b2c2d2,  получим

 22 2  2 2 2  2 22   22 2
a bc + ab d +a cd + b cd ≤ 1 (∗)

Поскольку неравенство симметричное, можно считать, что a ≥b≥ c≥ d.  По неравенству о средних для чисел a,b  и (c+ d)  имеем

        ( a+b +(c+d))3
ab(c+ d)≤  ----3------  =1

Следовательно, a2b2(c+ d)2 ≤1.  Значит, для доказательства (*) достаточно показать, что

a2b2c2+a2b2d2+ a2c2d2+ b2c2d2 ≤ a2b2(c+ d)2

После раскрытия скобок и приведения подобных слагаемых остаётся неравенство

a2c2d2+ b2c2d2 ≤2a2b2cd

которое является суммой двух очевидных неравенств  22 2   22
a cd ≤ a bcd  и 2 22   2 2
bc d ≤a bcd.

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!