Тема . Заключительный этап ВсОШ

Закл (финал) 9 класс

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела заключительный этап всош
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#70312

Остроугольный треугольник ABC (AB < AC )  вписан в окружность Ω  . Пусть M  - точка пересечения его медиан, а AH  - высота этого треугольника. Луч MH  пересекает Ω  в точке  ′
A . Докажите, что окружность, описанная около треугольника  ′
AHB  , касается AB  .

Источники: Всеросс., 2015, ЗЭ, 9.7(см. olympiads.mccme.ru)

Показать доказательство

Проведем серединный перпендикуляр к BC.  Пусть он пересекает луч HM  в точке P  , а BC  в точке F  . Тогда HM  :MP = AM :MF  =2 :1;

Также проведем прямую, параллельную BC  , через точку P  . Пусть она пересекает AH  в точке T  , а  ′
M — проекция точки M  на AH  . Тогда    ′   ′
HM  :M T = 1:2  и    ′  ′
HM  :M A= 2:4  . Следовательно T  — середина AH  .

PIC

Отметим точку A1  такую, что HP = PA1  . Тогда AA1||BC  в силу подобия треугольников HP T  и HAA1  . Кроме того, проецируя A1  на BC  получаем HF = FS  =⇒   BH = SC  . Следовательно, △ABH  = △A1SC  по двум катетам. А значит, ABCA1  — равнобедренная трапеция и A1  лежит на окружности, описанной около △ABC.

∠ABC = ∠BCA1  и ∠BCA1 = ∠BA ′H.  Следовательно, AB  — касательная к окружности, описанной около треугольника A′HB.

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!