Тема . Заключительный этап ВсОШ

Закл (финал) 9 класс

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела заключительный этап всош
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#94744

В стране некоторые пары городов соединены односторонними прямыми авиарейсами (между любыми двумя городами есть не более одного рейса). Скажем, что город A  доступен для города B,  если из B  можно долететь в A,  возможно, с пересадками. Известно, что для любых двух городов P  и Q  существует город R,  для которого и P,  и Q  доступны. Докажите, что существует город, для которого доступны все города страны. (Считается, что город доступен для себя.)

Источники: Всеросс., 2017, ЗЭ, 9.1(см. olympiads.mccme.ru)

Показать доказательство

Выберем город любой A  с наибольшим числом доступных городов. Предположим, что город B  не доступен для A.  Тогда для некоторого города C  доступны оба города A  и B.  Но тогда для C  доступны все города, доступные для A  и еще город B,  то есть большее количество городов, чем для A.  Это противоречит выбору A,  значит, для A  доступны все города.

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!