Алгоритм Евклида
Ошибка.
Попробуйте повторить позже
Найдите все натуральные для которых существует такое чётное натуральное
что число
является точным квадратом.
Источники:
Подсказка 1:
Попробуйте сначала вручную разобраться с n = 1, 2, 3. Для этих случаев достаточно вспомнить утверждение о том, что если произведение двух взаимно простых чисел — квадрат, то каждое из них также является квадратом. В частности, при n = 3 надо поработать с нодами скобок a - 1, a + 1, a² + a + 1. Быть может, этот ход мыслей можно развить и для больших n?
Подсказка 2:
Итак, скорее всего вы поняли, что n = 1, 2 подойдёт, а n = 3 — нет. Чем остальные случаи отличаются. Например, если n > 3, то оно находится между двумя натуральными степенями двойки. То есть существует такое натуральное k, что 2^k ≤ n < 2^{k + 1}. Подумайте, как это можно использовать.
Подсказка 3:
Если записать скобку a^{2^k} – 1 как (a^{2^{k – 1}} – 1)(a^{2^{k – 1}} + 1), то становится ясно, что все произведение состоит из скобки a^{2^{k – 1}} + 1 и скобок вида a^m – 1. А как насчёт того, чтобы посмотреть на нод выражений a^{2^{k – 1}} + 1 и a^{2^k} – 1 с произвольной скобкой a^m – 1?
Подсказка 4:
Нод второго выражения и a^m – 1 кратен ноду первого выражения и a^m - 1. Чтобы было проще работать, вот вам интересный факт: нод второй скобки и a^m – 1 равен a^нод(2^k, m) – 1. Осталось поработать с нодом 2^k и m.
Подсказка 5:
Исходя из выбора k, ясно, что нод 2^k и m не превышает 2^{k – 1}. Попробуйте теперь показать, что ноды выражений a^{2^{k – 1}} + 1 и a^{2^k} – 1 с a^m – 1 совпадают. Кажется, это раскроет идею подсказки 3.
Подсказка 6:
Стало быть, a^{2^{k – 1}} + 1 — точный квадрат. А вас это не смущает?
Заметим, что для подойдёт
Для
подойдёт
Предположим, что для нашлось требуемое число
Тогда число
является точным квадратом. Поскольку
числа и
взаимно просты. Раз число
нечётно, числа
и
также взаимно просты. Следовательно,
числа
и
— точные квадраты. В частности, число
при делении на 3 может давать лишь остаток 0 или 1, а
тогда число
не делится на 3. Отсюда
значит, числа и
также являются точными квадратами. Но второе являться квадратом не может,
поскольку
Противоречие.
Осталось доказать, что требуемого не существует при
Предположим, что такое
нашлось. Возьмём такое натуральное
что
Поскольку
число
представляется в виде произведения и нескольких множителей вида
где
и
Докажем, что множитель взаимно прост со всеми остальными множителями в этом разложении. Пусть
и
имеют некоторый общий делитель
Тогда и НОД
и
кратен
Но
Поскольку и
число
не может делиться на
Таким образом,
— степень двойки,
не превосходящая
Следовательно,
делится на НОД
и
а, значит, делится и на
Поскольку
чётно, числа
и
не имеют общих делителей, отличных от 1, значит,
что и
требовалось.
Множитель взаимно прост со всеми остальными множителями в произведении, являющемся точным квадратом, поэтому он
сам является точным квадратом. Тогда
и
— отличающиеся на 1 квадраты натуральных чисел, что невозможно. Значит,
наше предположение неверно, и для
требуемых чисел
не найдётся.
и
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!