Тема . БИБН (Будущие исследователи - будущее науки)

Планиметрия на БИБНе

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела бибн (будущие исследователи - будущее науки)
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#68255

На боковых сторонах AB  и CD  трапеции ABCD  взяты точки M  и N  соответственно, такие, что AN = BN  и ∠ABN = ∠CDM  . Докажите, что CM = MD  .

Показать доказательство

Из равенства AN =BN  следует, что ∠ABN  = ∠BAN  в равнобедренном треугольнике ABN  .

PIC

Тогда по условию задачи ∠CDM  = ∠BAN?  и значит? около четырехугольника AMND  можно описать окружность. Поэтому           ∘
∠MAD  = 180 − ∠MND  = ∠CNM  .

В трапеции углы при боковой стороне дают в сумме    ∘                ∘
180  =⇒   ∠MAD  = 180 − ∠MBC  . Таким образом, в четырехугольнике MBCN  сумма углов при вершинах B  и N  тоже равна   ∘
180 и поэтому около MBCN  можно описать окружность. Следовательно, ∠MCN  = ∠MBN  = ∠CDM  , а значит, треугольник CMD  тоже равнобедренный, и CM = MD  .

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!