Тема 1. Геометрия на плоскости (планиметрия)

1.12 Трапеция и ее свойства

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела геометрия на плоскости (планиметрия)
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#22942

Средняя линия трапеции равна 20. Одна из диагоналей трапеции делит среднюю линию в отношении 1 : 4. Найдите большее основание трапеции.

Показать ответ и решение

Пусть MN  – средняя линия трапеции ABCD  с большим основанием AD.  Точки M  и N  – середины боковых сторон AB  и CD  соответственно. Пусть диагональ AC  пересекает MN  в точке K.  Тогда MK  и NK  – средние линии треугольников ABC  и ACD  соответственно. Значит, получаем

MK  = 1BC,
      2
NK  = 1AD
      2

Следовательно, NK  > MK,  так как AD > BC.

PIC

Тогда имеем:

NK  :MK  = 4:1  ⇒   NK  :MN  = 4:5

NK  = 4MN  = 16  ⇒   AD = 2NK  =32
      5

Значит, большее основание трапеции равно 32.

 

Замечание.

Для диагонали BD  расчеты аналогичны, то есть выбор диагонали не имеет значения.

Ответ: 32

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!