Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела росатом
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#83300

Найти коэффициент a
 49  многочлена P(x)= (1+x15+ x17)6  , если бы он был приведен в форму суммы одночленов вида    k
akx ,k = 0,2,3,...,102  .

Источники: Росатом - 2024, московский вариант, 11.5, по мотивам 10.2 ММО - 2005 (см. olymp.mephi.ru)

Подсказки к задаче

Подсказка 1

Обратим внимание на степени переменных. Понятно, что при раскрытии скобок для каждого одночлена степень будет вида 17n+15m. Тогда найдём натуральные решения для 17n+15m=49

Подсказка 2

Правильно, единственное решение - (2;1). То есть при перемножении скобок мы 2 раза взяли х¹⁷ и 1 раз х¹⁵. Обратим внимание также, что в заданной скобке перед каждым одночленом коэффициент 1. Как тогда мы можем выразить коэффициент перед х⁴⁹?

Подсказка 3

Конечно, коэффициент перед х⁴⁹ равен количеству способов выбрать комбинацию из двух х¹⁷ и одного х¹⁵ в 6 скобках. Остаётся только это досчитать

Показать ответ и решение

Понимаем, что при раскрытии скобок степень каждого одночлена будет иметь вид 17n +15m,  где n  — количество взятых x17,m  — количество взятых  15
x .  Поэтому решим сначала уравнение в натуральных числах

17n +15m = 49

Нетрудно заметить решение n= 2,m =1,  а также что это решение единственное, т.к. иначе, чтобы сохранить нужные остатки, x  будет изменяться на кратное 15 число, а y  на кратное 17, поэтому одно из них станет отрицательным.

Осталось лишь посчитать количество способов выбрать комбинацию из двух x17  и одного x15  в 6 скобках:

  2  1  6⋅5
C6 ⋅C 4 = 2 ⋅4= 60
Ответ: 60

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!