Тема . ТурЛом (турнир Ломоносова)

Планиметрия на Турломе

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела турлом (турнир ломоносова)
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#76578

Пусть O  — центр описанной окружности, G  — точка пересечения медиан остроугольного треугольника ABC.  Прямая, перпендикулярная OG  , проходящая через точку G,  пересекает отрезок BC  в точке K.  Касательная к описанной окружности треугольника ABC  в точке A  пересекает прямую KG  в точке L.  Найдите величину угла ∠ACB,  если           ∘
∠LOK  = 155 ,  а          ∘
∠ABC  =53 .

Источники: Турнир Ломоносова-2022, 11.3

Показать ответ и решение

Пусть M  — середина стороны BC;  поскольку AM  — медиана, то точки G  лежит на AM.

PIC

Четырёхугольник OGMK  — вписанный, так как ∠OGK  =90∘ = ∠OMK  (первое равенство по условию, второе следует из того, что OM  — серединный перпендикуляр к BC  ), откуда ∠GOK = 180∘ − ∠GMK =  ∠GMC.

Четырёхугольник OGLA  — вписанный, так как ∠OGL = 90∘ = ∠OAL  (первое равенство по условию, второе следует из того, что  OA  — радиус, а AL  — касательная к описанной окружности треугольника ABC  ), откуда ∠GOL  =∠GAL.

Значит,

∠ACB = 180∘− (∠CAM + ∠CMA )= 180∘ − (∠LAM + ∠CMA − ∠LAC )=

= 180∘− (∠LOG +∠GOK  − ∠ABC )= 180∘ − (∠LOK − ∠ABC )=

= 180∘ − (155∘− 53∘) =78∘

Первое равенство следует из суммы углов треугольника AMC.

Ответ:

 78∘

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!