Тема . ТурЛом (турнир Ломоносова)

Планиметрия на Турломе

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела турлом (турнир ломоносова)
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#93349

Пусть O  — центр описанной окружности остроугольного треугольника ABC.  На сторонах AB  и AC  отмечены точки P  и Q  соответственно. Оказалось, что описанная окружность треугольника AP O  касается прямой BO,  описанная окружность AQO  касается прямой CO,  а периметр треугольника AP Q  равен AB + AC.  Найдите величину угла ∠BAC.

Источники: Турнир Ломоносова - 2021, 11.3 (см. turlom.olimpiada.ru)

Показать ответ и решение

Поскольку описанная окружность треугольника APO  касается прямой BO,∠P OB =∠P AO.  Кроме того, поскольку O  — центр описанной окружности треугольника ABC, OA =OB,  откуда ∠OAB = ∠OBA.  Значит, ∠POB = ∠PBO,  откуда P B = PO.  Аналогично, QO = QC.

По условию, AP + AQ +PQ = AB +AC,  то есть PQ= PB + QC,  Из предыдущего абзаца мы знаем, что тогда PQ = PO +OQ,  т.е. точки P,  O  и Q  лежат на одной прямой.

PIC

Осталось посчитать уголки. Например, это можно сделать так:

180∘ =(∠POB + ∠QOC )+∠BOC  =

(∠PAO + ∠QAO )+∠BOC  =∠BAC  +2∠BAC = 3∠BAC

        ∘
∠BAC = 60 .
Ответ:

 60∘

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!