Тема . Многочлены

Свойства коэффициентов многочленов, раскрытие скобок и бином Ньютона

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела многочлены
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#65391

Докажите, что после раскрытия скобок и приведения подобных слагаемых в выражении

       2   4   520         2  4   520
(1+x +x + x + x)  +(1− x+ x +x  − x )

не останется слагаемых с нечётной степенью x.

Подсказки к задаче

Подсказка 1

Заметим, что выражения в скобках очень похожи. Они отличаются только знаками перед x в нечетных степенях. А как вообще после раскрытия скобок у какого-то слагаемого получается нечетная степень?

Подсказка 2

Да, нечетная степень получается, если взять из скобки x в нечетной степени нечётное число раз! А мы поняли, что наши две скобки отличаются только знаками у x в нечетных степенях. Что тогда можно сказать про любое слагаемое(которое представляет собой x в нечетной степени) после раскрытия обеих скобок?

Показать доказательство

Посмотрим на любой одночлен нечётной степени у (1+ x+ x2+ x4+x5)20  после раскрытия скобок до приведения подобных. Нетрудно понять, что в него взяли из нечётного количества скобочек x  в нечётной степени, а из остальных — x  в какой-то четной степени. Заметим, что это же самое слагаемое до приведения подобных у        2   4   520
(1− x+ x +x − x )  будем с тем же коэффициентом, но противоположным знаком. Это так, потому что тут перед x  в нечётных степенях стоят минусы и количество взятых x  в нечётной степени нечётно. Следовательно, все слагаемые с нечетными степенями при привидении подобных взаимоуничтожатся, что и требовалось.

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!