Свойства коэффициентов многочленов, раскрытие скобок и бином Ньютона
Ошибка.
Попробуйте повторить позже
В выражении раскрыли скобки и привели подобные слагаемые. Докажите, что сумма коэффициентов при одночленах вида (с целыми неотрицательными составляет треть от суммы всех коэффициентов.
Попробуем найти сумму всех коэффициентов многочлена, чтобы получше понять, что от нас требуют. Пусть мы раскрыли скобки и получили многочлен вида: Тогда сумма коэффициентов равна значению этого многочлена в точке 1. Отсюда она равна: Теперь нам надо доказать, что сумма коэффициентов при одночленах вида равна
Заметим теперь, что эта сумма коэффициентов равна числу способов получить одночлен вида путем выбора степени из каждой скобки. Тогда из первых девяти скобок можно выбрать по правилу произведения. А из последней скобки мы можем выбрать лишь тремя способами (каждый остаток показателя степени встречается ровно 3 раза, для делимости мы выбираем только один остаток). Тогда искомая величина равна
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!