Свойства коэффициентов многочленов, раскрытие скобок и бином Ньютона
Ошибка.
Попробуйте повторить позже
Коэффициенты многочлена степени
взятые в том же порядке (начиная со старшей степени), образуют геометрическую прогрессию со знаменателем Выясните, может ли иметь только один корень.
Если может, укажите минимальную степень (из диапазона выше), при которой это возможно, и выразите корень через и . Если нет, укажите минимально возможное количество корней при любом
Источники:
Подсказка 1
Давайте подумаем, как можно использовать то, что коэффициенты образуют геометрическую прогрессию? Чем является каждое слагаемое в многочлене?
Подсказка 2
Одночлены образуют геометрическую прогрессию тоже! Нетрудно заметить, что знаменатель этой прогрессии равен q/x. Тогда чему равна сумма одночленов?
Подсказка 3
По формуле можно найти сумму. Остаётся решить простое уравнение. Не забудьте учесть, что знаменатель не равен 0!
Заметим, что и следовательно Значит, не является корнем.
Поймём, что одночлены (начиная со старшего) в многочлене образуют геометрическую прогрессию с знаменателем Значит, многочлен может быть представлен как сумма первых члена данной прогрессии. Заметим, что если то
Значит, не корень. Поэтому дальше будем считать и запишем следующее
Выразим корни с учётом и
Если нечётно, тогда чего быть не может, а если чётно, тогда а в силу ограничений получаем Это и будет единственным корнем.
Теперь найдём минимальное Из условий и чётно получаем, что подходит.
может при , корень равен
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!