Тема . Уравнения в целых числах

Уравнения на НОД и НОК

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела уравнения в целых числах
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#94776

Найдите количество пар натуральных чисел (a;b)  , каждое из которых меньше миллиона, удовлетворяющих равенству

Н ОК (a,b+ 1)= HOK (b,a+ 3)

Источники: Бельчонок - 2021, 11.4 (см. dovuz.sfu-kras.ru)

Подсказки к задаче

Подсказка 1

Тут главное — вспомнить, что такое НОК! Это наименьшее общее кратное чисел, НОК(x, y) ⋮ x, ⋮ y. А нам хотелось бы наоборот понять, какими свойствами обладают числа a и b, можем ли записать какое-то выражение с их помощью, которое будет делиться на НОКи в левой и правой части?

Подсказка 2

Ага, можем записать произведение a(b+1) к примеру! Оно будет делиться на НОК(a, b+1), а на что ещё? Аналогично можно составить ещё одно произведение из правой части.

Подсказка 3

Выходит, что a(b + 1) ⋮ b, ⋮ (a+3), в каких случаях такое может быть? И ещё выходит, что b(a+3) ⋮ a, ⋮ (b+1). Разберите все возможные варианты и поймите, какими свойствами обладают a и b!

Подсказка 4

После того как определили, как а выражается через b, можно подставить это в изначальное равенство на НОКи и подумать, когда оно возможно. Так там будут встречаться тройки, можно подумать про этот модуль. И найти количество подходящих пар!

Показать ответ и решение

Заметим, что b(a+ 3)  делится на НОК (b,a+ 3)  , который равен НОК (a,b+ 1)  и в свою очередь делится на a  . Также a(b+ 1)  делится на НОК (a,b+ 1)=HOK (b,a +3)  , а последнее выражение делится на b  , поэтому a  делится на b  . Значит, либо a= b  , либо a=   3b  . В первом случае получаем

a(a+ 1)=HOK (a,a+ 3)

следовательно, a(a+1)= (a+ 3)(a− 2)+ 6  делится на a+ 3  . Таким образом, a+ 3  есть делитель 6 , откуда a= 3,b= 3  — увы, эта пара чисел не удовлетворяет уравнению. Во втором случае, получаем

НО К (3b,b+ 1)=HOK (b,3(b+1))

Если b  кратно 3 , то левая часть делится на большую степень тройки, чем правая. Если b+1  кратно 3, то правая часть делится на большую степень тройки, чем левая. Если же b  дает при делении на 3 остаток 1 , то обе части равны 3a(a+1)  . Итак, требуется найти количество натуральных чисел b= 3x+ 1  , таких что 3b< 1000000  . Их ровно 111111.

Ответ: 111111

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!