Тема . ТЕОРИЯ ЧИСЕЛ

Оценка + пример в задачах по теории чисел

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела теория чисел
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#127158

Дано натуральное число n.  Натуральные числа 1,2,...,n  выписывают на доске в строчку в некотором порядке. У каждых двух стоящих рядом чисел вычисляют их НОД (наибольший общий делитель) и записывают этот НОД на листке. Какое наибольшее количество различных чисел может быть среди всех n − 1  выписанных на листке чисел?

Источники: ВСОШ, ЗЭ, 2025, 10.5 (см. olympiads.mccme.ru)

Показать ответ и решение

Оценка. Предположим, что какое-то из выписанных на листке чисел больше ⌊n∕2⌋,  скажем, НО Д(a,b)= d> ⌊n∕2⌋.  Тогда наибольшее из чисел a,b  не меньше 2d,  что больше n  – противоречие (НОД двух чисел, не превосходящих n,  не превосходит n  ). Значит, каждый из написанных Н ОД  ов не превосходит ⌊n∕2⌋,  потому количество различных Н ОД  ов не может превышать ⌊n∕2⌋.

Пример. Разобьём все числа от 1  до n  на цепочки вида              k
a,2a,4a,8a,...,2a,  где a  — нечётное число, не превосходящее n.  Выпишем в строчку цепочки одну за другой. Тогда для любого натурального d≤ ⌊n∕2⌋ найдётся цепочка, в которой встречается d,  а следующее за d  число будет 2d.  Видим, что каждое натуральное d≤⌊n∕2⌋ будет выписано на листке.

Ответ:

⌊n⌋
 2

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!