Тема . МВ / Финашка (Миссия выполнима. Твоё признание — финансист!)

Алгебраические текстовые задачи на МВ (Финашке)

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела мв / финашка (миссия выполнима. твоё признание — финансист!)
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#74604

В треугольнике отметили шесть ячеек: в вершинах и в серединах сторон. Шесть последовательных натуральных чисел от 10 до 15 вписаны в эти ячейки таким образом, что суммы трех чисел на каждой из сторон равны. Какое максимальное значение может принимать эта сумма?

Показать ответ и решение

Пусть a,b,c,d,e,f  — указанные числа, записанные в порядке их следования в кругах при обходе по часовой стрелке и числа a, c, e располагаются в вершинах треугольника. Если S  — рассматриваемая сумма, то имеем:

(
|{ a+ b+ c=S,
|( c+ d+ e=S,
  e+ f + a= S.

Складывая все уравнения системы, получаем: (a+ b+ c+d +e+ f)+ a+c+ e= 3S,  где a+ b+c+ d+ e+f = 75,  то есть:

                        a+-c+e-
75+ a+ c+e =3S ⇔ S = 25+  3   .

Следовательно, число S  не может быть больше числа     15+14+13
25+    3   = 39.

Приведем пример, когда 39  достигается.

PIC

Ответ: 39

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!