Комбинаторика на МВ (Финашке): графы, турниры, множества, способы
Ошибка.
Попробуйте повторить позже
По регламенту шахматного турнира каждый участник должен сыграть с каждым один раз. После того как было сыграно ровно 99 партий, оказалось, что множество участников турнира можно разбить на две неравные по численности группы так, что все соперники, относящиеся к одной и той же группе, уже сыграли партии между собой. При этом были сыграны, но не более четырех, партии между соперниками, которые относятся к разным группам. Каково наибольшее возможное число участников этого шахматного турнира?
Источники:
Пусть число участников турника равно а число попавших в
-ю группу равно
. Тогда число сыгранных партий
равно:
где
откуда
Если то:
тогда - противоречие;
- противоречие;
- противоречие;
- противоречие;
при и
Если то:
тогда - противоречие;
- противоречие;
- противоречие;
- противоречие;
при и
Если то:
тогда - противоречие;
- противоречие;
- противоречие;
- противоречие;
- противоречие;
- решение.
при и
Итак, наибольшее возможное число участников равно , группы участников насчитывают
и
человек, количество
«межгрупповых» партий равно
.
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!