Тема 18. Работа с электронными таблицами

18.03 Робот-сборщик – ямы и/или стены

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела работа с электронными таблицами
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#60040

Квадрат разлинован на N × N  клеток (2 < N < 21). В каждой клетке записано целое положительное число – количество монет. Исполнитель Сборщик имеет две команды ВПРАВО и ВНИЗ, которые, соответственно, перемещают его на одну клетку вправо или на одну клетку вниз. Проходя через клетку, Сборщик собирает все монеты, лежащие на ней. Это также относится к начальной и конечней клеткам маршрута. На поле существуют стены, обозначены жирной линией, через которые Сборщик проходить не может. Исполнитель начинает движение в левой верхней клетке и заканчивает в правой нижней. Какое максимальное и минимальное количество монет может собрать Сборщик, пройдя от начальной клетки до конечной?

Исходные данные записаны в файле 18_6.xlsx в виде электронной таблице размером N  × N  , каждая ячейка которой соответствует клетке квадрата. В ответе укажите без пробелов и разделителей сначала максимальный, затем минимальный результат, который может быть получен исполнителем.

Вложения к задаче
Показать ответ и решение

Так как робот идет из верхней левой в правую нижнюю клетку и эта клетка удовлетворяет условиям нашей задачи, переписываем ей без изменений в ячейку А22.

Заполняем всю таблицу аналогично первой и второй задаче. Выделяем желтым цветом диапазон ячеек, которые стоят ПОД стеной и зеленым цветом, которые стоят справа от стены.
PIC

В желтые ячейки можно прийти только из ячеек, находящихся слева, поэтому модернизуем формулу. В желтые ячейки необходимо написать формулу, аналогичиную формуле для первой строки, то есть исходная ячейка + предыдущая слева.

В зеленые ячейки можно прийти только из ячеек, находящихся сверху, поэтому модернизуем формулу. В зеленые ячейки необходимо написать формулу, аналогичиную формуле для первого столбца, то есть исходная ячейка + предыдущая сверху.

Максимальная сумма в правой нижней ячейке 2637.

Для того, чтобы найти минимальную сумму необходимо заменить во всех формулах МАКС на МИН. Минимальная сумма равна 1403.

Ответ: 26371403

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!