Тема 16. Рекурсивные алгоритмы

16.01 Одна функция

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела рекурсивные алгоритмы
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#26951

Алгоритм вычисления значения функции F(n)  , где n  — целое неотрицательное число, задан следующими соотношениями:

F (1) = 0  , F(2) = 1  , F(3) = 1

F (n) = F(n − 1) +F (n− 2)  , при n > 3

Чему будет равно значение, вычисленное при выполнении вызова F(11)  ?

Показать ответ и решение

Рекурсивное решение

В задаче задан рекурсивный алгоритм, при котором функция в процессе вычислений вызывает сама себя с другими аргументами. Для реализации создаём пользовательскую функцию в Python с помощью def  . Внутри функции используем условный оператор if  , чтобы задать ветвление: F (1) = 0  , F(2) = 1  , F(3) = 1  , рекуррентная формула для n > 3  : F (n) = F(n − 1) +F (n− 2)  . Реализуем рекурсивно по определению и вычислим F (11)  .

def f(n):
    # База 1: F(1) = 0
    if n == 1:
        return 0
    # База 2: F(2) = 1, F(3) = 1
    if n in [2, 3]:
        return 1
    else:
        # Рекуррентная формула: F(n) = F(n-1) + F(n-2)
        return f(n - 1) + f(n - 2)

print(f(11))

Ответ: 55

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!