Тема 15. Алгебра логики – преобразование логических выражений

15.02 Множества

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела алгебра логики – преобразование логических выражений
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#80622

Элементами множеств А, P и Q являются натуральные числа, причём P = {2, 4, 6, 7, 11, 13, 14, 15, 16, 19, 21, 24, 27, 28, 29} и Q = {2, 3, 6, 9, 12, 13, 16, 17, 19, 21, 22, 23, 24, 25, 29}. Известно, что выражение

((x ∈ Q) → ¬(x ∈ P)) → ¬ (x ∈ A)

истинно (т. е. принимает значение 1) при любом значении переменной х. Определите наибольшее возможное количество элементов множества A.

Показать ответ и решение

Упростим выражение:

((x ⁄∈ Q)∨ (x ⁄∈ P )) → (x ⁄∈ A )

(x ∈ Q )∧(x ∈ P)∨ (x ⁄∈ A)

Найдём при каких x  ложно выражение

(x ∈ Q )∧ (x ∈ P)

То есть

(x ⁄∈ Q )∨ (x ⁄∈ P)

Это все числа, которые не входят ни в P ни в Q. Тогда, множество A будет состоять из чисел, которые есть в обоих множествах. Это числа: 2, 6, 13, 16, 19, 21, 24, 29. Значит, ответ – 8.

Ответ: 8

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!