Планиметрия на Бельчонке
Ошибка.
Попробуйте повторить позже
Точка — центр окружности, вписанной в неравнобедренный треугольник
Луч
пересекает окружность, описанную около
треугольника
в точке
Окружность, проходящая через точки
и
вторично пересекает луч
в точке
Докажите,
что
Источники:
Подсказка 1
Нам нужно доказать, что BK=CK, но это значит, что точка K должна лежать на серединном перпендикуляре к BC. А какая прямая является этим перпендикуляром? Попробуйте найти её на чертеже!
Подсказка 2
Верно, прямая DO является серединным перпендикуляром к BC. Пусть DO пересекает BI в точке L. Но, если K так же принажлежит DO, то что можно сказать про точки K и L?
Подсказка 3
Да, они должны совпадать! Это верно, если точка L лежит на окружности, описанной около CDI. Попробуйте это доказать, используя равенство каких-то всписанных уголков!
Пусть — центр описанной окружности треугольника
Обозначим
Так как — биссектриса угла
то точка
— середина дуги
окружности, описанной около
Отсюда прямая
—
это серединный перпендикуляр к отрезку
Пусть
тогда
то есть треугольник
равнобедренный
и
Отсюда
С другой стороны,
Таким образом, четырёхугольник вписанный, то есть точка
лежит на пересечении прямой
и окружности, описанной
около
откуда точки
и
совпадают, то есть
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!