Алгебра. Теорема Виета
Ошибка.
Попробуйте повторить позже
При каких значениях сумма квадратов различных корней уравнения больше ?
Подсказка 1
Понимаем, что перед нами квадратное уравнение) У нас присутствуют какие-то ограничения, связанные с корнями... Тогда для начала попробуем понять, какие же условия на количество корней следуют из условия задачи и как их учесть?
Подсказка 2
Нам нужно 2 различных корня, поэтому следует записать условие на положительность дискриминанта! Благодаря этому мы
Подсказка 3
С помощью теоремы Виета! (x_1)^2 + (x_2)^2 = (x_1 + x_2)^2 - 2*(x_1)*(x_2). А сумму и произведение корней можно записать через a, тогда сможем, использовав условие, наложить на a еще какие-то ограничения! Осталось пересечь две получившихся области)
В этой задаче мы хотим двух вещей: чтобы у уравнения были два различных корня и чтобы сумма их квадратов была больше единицы.
Первое условие равносильно тому, что дискриминант должен быть больше нуля.
Значит .
Теперь рассмотрим сумму квадратов корней. Она равна
Значит условие равносильно (если корни есть) условию или .
Осталось пересечь две получившихся области и получить
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!