Тема . Задачи с параметром

Алгебра. Теорема Виета

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела задачи с параметром
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#32950

При каком значении параметра а значение выражения x2+ x2
 1   2  будет наименьшим, если x
 1  и x −
 2 корни уравнения  2
x − 2ax+2a − 5= 0?

Подсказки к задаче

Подсказка 1

Хм, а может ли это уравнение иметь только один корень? Или вообще не иметь корней?

Подсказка 2

Нет, это уравнение имеет два корня, потому что его дискриминант точно больше нуля! А с помощью чего мы можем оценить сумму квадратов корней?

Подсказка 3

Точно, можно воспользоваться теоремой Виета! Но через неё мы сможем найти только сумму и произведение корней... Как найти сумму квадратов?

Подсказка 4

Да, сумму квадратов легко выразить через квадрат суммы! Остается только оценить наше выражение снизу.

Показать ответ и решение

Заметим, что у такого уравнения корни всегда есть, потому что дискриминант квадратного трёхчлена из левой части положителен при любом значении a  :

D    2              2
-4 = a − (2a− 5)=(a− 1) +4> 0

Тогда по теореме Виета x1+ x2 =2a  и x1⋅x2 = 2a− 5  . Заметим, что значение выражения

x21+ x22 =(x1+ x2)2− 2⋅x1⋅x2 =

=4a2− 4a+10= (2a− 1)2+ 9≥ 9

принимает наименьшее значение при 2a− 1 =0  .

Ответ:

 1
2

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!