Тема . Задачи с параметром

Алгебра. Теорема Виета

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела задачи с параметром
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#51859

Уравнение x2+ax+ 5= 0  имеет два различных корня x
 1  и x;
2  при этом

 2  250-  2  -250-
x1+ 19x32 =x2+ 19x31.

Найдите все возможные значения a  .

Источники: Физтех-2018, 10.3 (см. olymp.mipt.ru)

Показать ответ и решение

Чтобы получить два различных корня, дискриминант D = a2− 20  должен быть положителен, то есть a2 > 20  . Далее мы можем использовать теорему Виета, тогда x1+ x2 = −a,x1x2 = 5  . Теперь преобразуем равенство в условии

        250   250                          250(x1− x2)(x2+ x1x2+x2)
x21− x22+ 19x3-−19x3= 0  ⇐⇒   (x1− x2)(x1+ x2)+-------19(x11x2)3-----2-= 0
          2     1

Вынесем x1 − x2 ⁄= 0  , Выразим вторую скобку в числителе x21+ x1x2+ x22 = (x1+x2)2− x1x2 = a2− 5  , теперь подставим

−a+ 250⋅ a2−-5= 0 ⇐⇒   2a2 − 10= 19a ⇐ ⇒ a = 10,a= − 1
    19   125                                      2

Поскольку a2 > 20  , то остаётся только одно значение.

Ответ:

 a =10

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!