Алгебра. Теорема Виета
Ошибка.
Попробуйте повторить позже
Найдите все значения при каждом из которых уравнение
имеет решения и все решения этого уравнения положительные.
Подсказка 1
Подумайте, всегда ли это уравнение будет квадратным, если нет, то когда не будет?
Подсказка 2
Если перед нами точно квадратное уравнение, то необходимо гарантировать наличие корней в целом – какое условие нужно учесть для этого?
Подсказка 3
Если у квадратного уравнения есть корни, то можно расписать для них теорему Виета и подумать, какие условия нужно наложить на сумму и произведение корней, чтобы выполнялось условие задачи.
Данное уравнение квадратного типа и вырождается в линейное при Рассмотрим этот случай отдельно. Тогда уравнение примет вид
откуда следовательно, данное значение нам подходит.
Пусть Тогда уравнение квадратное и дискриминант
откуда
Для того, чтобы оба корня квадратного уравнения были положительны, необходимо, чтобы их сумма и произведение были положительны. Следовательно, по теореме Виета:
С учетом положительности дискриминанта получаем
В ответе не забудем рассмотренный ранее случай
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!