Тема . Задачи с параметром

Алгебра. Теорема Виета

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела задачи с параметром
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#97392

Найдите все значения a,  при каждом из которых уравнение

     2
(a− 3)x  − 2ax+ 5a= 0

имеет решения и все решения этого уравнения положительные.

Показать ответ и решение

Данное уравнение квадратного типа и вырождается в линейное при a =3.  Рассмотрим этот случай отдельно. Тогда уравнение примет вид

−2x+ 5= 0,

откуда x =2,5 >0,  следовательно, данное значение a  нам подходит.

Пусть a⁄= 3.  Тогда уравнение квадратное и дискриминант

     2
D = 4a − 20a(a− 3)≥ 0,

откуда a∈ [0;3,75].

Для того, чтобы оба корня квадратного уравнения были положительны, необходимо, чтобы их сумма и произведение были положительны. Следовательно, по теореме Виета:

   (|| -2a-> 0
   { a− 3
   ||( -5a-> 0
     a− 3
a ∈(−∞; 0)∪ (3;+∞ )

С учетом положительности дискриминанта получаем

a ∈(3;3,75]

В ответе не забудем рассмотренный ранее случай a= 3.

Ответ:

 [3; 3,75]

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!