Тема . Задачи с параметром

Алгебра. Теорема Виета

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела задачи с параметром
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#99230

Точку случайно бросают на отрезок [6;11]  и пусть k  — получившееся значение. Найти вероятность, что корни уравнения

( 2       ) 2
 k − 2k − 15 x +(3k− 7)x+ 2= 0

удовлетворяют условию x ≤ 2x.
 1    2

Источники: Газпром - 2023, 11.5 (см. olympiad.gazprom.ru)

Подсказки к задаче

Подсказка 1

Нам нужно как-то связать корни с коэффициентами в квадратном уравнении. Можно попытаться воспользоваться дискриминантом, но получится ли красиво выразить корни? Как тогда работать с корнями иначе?

Подсказка 2

Воспользуйтесь теоремой Виета. Можно попробовать понять,при каких k у нас один корень будет ровно в 2 раза больше второго!

Подсказка 3

Один корень в два раза больще второго при k = 23/3.

Подсказка 4

Так как мы решаем неравенство для корней, то можно воспользоваться методом интервалов для k!

Подсказка 5

Вероятность надо считать, используя подходящий отрезкок!

Показать ответ и решение

По теореме Виета:

{  x +x  =--7−3k-
    1  2  k2−22k−15
   x1⋅x2 = k2−2k−15

Найдём значение k  при условии, что x =2x
1    2  , а затем воспользуемся методом интервалов:

{ 3x = -7−3k--,
    22  k2−2k2−15
  2x2 = k2−2k−15

({ x2 = --7−3k--,
(  2   3(k2−12k−15)
  x2 = k2−2k−15

  (7− 3k)2         1
9(k2−-2k−-15)2 = k2−-2k−-15

Так как k2− 2k− 15 >0  для k∈ (−∞;−3)∪ (5;+∞ )  , умножив обе части равенства на квадрат этого выражения, получим

(7− 3k)2   2            2           2                        23
---9--- =k − 2k− 15⇔ 9k − 42k+ 49= 9k − 18k− 135⇔ 24k= 184⇔ k= -3 .

Изобразим на числовой оси полученное значение k  , и проверим, какая часть оси удовлетворяет условию x1− 2x2 ≤ 0.

Значит, условие x1 ≤ 2x2  выполняется для    23
k≤ -3  . Тогда     23−6   1
P = 311−6-= 3.

Ответ:

 1
3

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!