Алгебра. Исследование замены
Ошибка.
Попробуйте повторить позже
При каких значениях параметра система уравнений
не имеет решений?
Источники:
Подсказка 1
Запишем одз и преобразуем первое уравнение по свойствам логарифма! Как можно теперь выразить y через x?
Подсказка 2
Если вышло, что log_3(xy) = 1, то все верно) Тут мы получаем, что xy = 3, то есть y = 3/x. Давайте подставим во второе уравнение. Какие значения а мы теперь должны найти?
Подсказка 3
Мы должны найти все такие а, что полученное уравнение не имеет положительных корней, которые отличаются от 1 и 3. Наше уравнение выглядит как 3/x = 3 - ax. Домножим на x и получим ax^2 -3x + 3 = 0. Какие случаи стоит рассматривать?
Подсказка 4
Для начала можем посмотреть на a = 0, тогда уравнение не квадратное. С этим случаем легко разобраться. Со случаем a!=0 вот что можно делать: либо у него нет корней, либо они есть, либо они отрицательные, либо положительные корни - 1 или 3)
Область допустимых значений переменных задается условиями
Из первого уравнения получаем
откуда .
Подставив во второе уравнение, получим
Мы должны найти все такие , при которых это уравнение не имеет положительных корней, отличных от 1 и 3.
Если , то единственный корень. Но .
Если же и дискриминант - отрицателен, то действительных корней нет вообще.
Итак при исходная система решений не имеет. При хотя бы один положительный корень у квадратного уравнения есть, поскольку сумма корней и их произведение имеют одинаковый знак. Если же один из корней равен 3, то и уравнение имеет также корень , а исходная система имеет решение
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!