Алгебра. Задачи без идеи, решающиеся аналитически
Ошибка.
Попробуйте повторить позже
Для всех действительных параметров определите число корней уравнения
на полуинтервале
Источники:
Подсказка 1
Давайте сразу избавимся от модуля и получим 2 простых тригонометрических уравнения, которые мы очень хорошо знаем со школы. Как будут выглядеть решения на тригонометрической окружности при разных a?
Подсказка 2
Верно, при a ∈ (0,1) каждое из уравнений даёт нам по 2 точки, при a ∈ {0,1} по одной. Теперь же нам важно, сколько полукругов мы успеем "навернуть" при x ∈ [0;24), давайте оценим это выражение.
Подсказка 3
Верно, мы успеем пройти 11 полуокружностей, сколько в каждом случае тогда мы получим решений?
Линейное по выражение при . Рассмотрим тригонометрическую окружность. Если , то решению соответствует точки на окружности, по на каждой полуокружности, которых всего , так как аргумент принимает значения из . Итого решений.
Если , то подходят точки вида . То есть решений в этом случае.
Если , то на каждой полуокружности подходит по одной точке вида . То есть решений всего.
решений при
решения при
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!