Алгебра. Задачи без идеи, решающиеся аналитически
Ошибка.
Попробуйте повторить позже
Найдите все значения , при каждом из которых уравнение
имеет рациональное решение . Здесь, - целая часть числа .
Источники:
Подсказка 1
Чтобы найти все а, нужно сначала найти все возможные значения [tgа]. А чтобы целая часть тангенса не смущала, можно просто заменить её на некоторое целое число b.
Подсказка 2
Если b = 0, b > 0 и b < 0. Первый совсем простой. Рассмотрим, когда b > 0, то есть b — натуральное. Попробуйте оценить правую часть выражения. Может ли х быть отрицательный?
Подсказка 3
Чтобы ответить на вопрос предыдущей подсказки, Вам поможет неравенство (b - 1)² ≥ 0.
Подсказка 4
Эти выражения имеют одни и те же простые делители! Тогда если p — некоторый общий простой делитель, то пусть b² + 2 = pN, а 2b - 1 = pM. Избавившись от b в левых частях уравнений полученной системы, получите уравнение в целых числах(*) и сделайте вывод, чему может быть равно p.
Подсказка 5
р = 3. Поэтому можно записать b² + 2 как 3^n, а 2b - 1 как 3^m, тогда, используя это, (*) уже совсем несложно решается.
Подсказка 6
Случай b < 0, решается аналогично, если сделать замену c = -b.
Положим . Тогда уравнение принимает вид . Нужно найти все целочисленные значения , при которых существует рациональное решение .
При решений нет. Рассмотрим вначале случай , т.е. . Тогда поскольку при любом натуральном
то можем считать, что в представлении числа и натуральные. Значит, числа и имеют одни и те же простые делители.
Пусть - общий простой делитель этих чисел, тогда
где и - натуральные. Исключая из левых частей уравнений этой системы, получаем
Значит - натуральное, а -делитель 9 , т.е. . Поэтому
где и - натуральные и . Так как
a не делится на 3 , то и .
Для отрицательных решение проводится почти аналогично. Положим . Тогда исходное уравнение будет записываться в виде:
Случай очевиден, поскольку решение . Пусть . Аналогично предыдущему показывается, что в представлении числа и натуральные. Опять предположив, что - общий простой делитель этих чисел, получим
и также сделаем вывод, что . Поэтому
где и - натуральные и . Так как
а не делится на 3 , то и или , но последнее уравнение не имеет натуральных решений.
Поэтому все решения описываются уравнениями: и , решив которые приходим к ответу.
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!