Тема . Задачи с параметром

Алгебра. Задачи без идеи, решающиеся аналитически

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела задачи с параметром
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#90122

Найдите все значения a  , при каждом из которых неравенство

alog3x+ log1∕2x >1

имеет решения, причем среди решений нет больших 1.

Подсказки к задаче

Подсказка 1

Левая часть выглядит немного громоздко, поэтому давайте попробуем преобразовать её. Вспомним формулу перехода к новому основанию и вынесем общую часть.

Подсказка 2

Один из множителей содержит скобку a - log₂3. Давайте разберём три случая для значений a, когда эта скобка равна нулю, меньше или больше нуля, и решим задачу.

Показать ответ и решение

Первое решение.

С использованием формулы перехода получаем: log3x ⋅(a− log23)> 1.  Если a= log23  , то решений нет. Если a> log23  , то решение     a−l1og-3
x >3    2 > 1.  Если a< log23  , то решение        a−1log3-
0< x< 3   2  < 1  .

Второе решение.

ОДЗ: x> 0

log3xa − log2x >1,

 logxa   log x
3 3   − 3 2 > 1,

 a  log23
x − x   > 1,

{  a− log2 3> 0,x> 1− Не подходит под условие
   a− log2 3< 0,x< 1

a< log23  =⇒   a∈(−∞; log23)
Ответ:

 (−∞;log 3)
       2

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!