Тема . Задачи с параметром

Монотонность и производная в параметрах, уравнения вида f(t) = f(z) или f(f(x)) = x

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела задачи с параметром
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#81380

При каких значениях параметра b  существует прямая, касающаяся графика функции f(x)=x4+ bx2+x  в двух точках? Для каждого такого значения параметра b  найдите уравнение соответствующей прямой.

Источники: Миссия выполнима - 2024, 11.7 (см. www.fa.ru)

Подсказки к задаче

Подсказка 1

Что означает касание? Какую систему нам нужно решать? Сколько корней у неё должно быть?

Показать ответ и решение

Условие, что прямая вида y =kx+ m  касается графика y = f(x)  означает равенство функций и равенство производных в точке касания:

({ 4   2
 x + bx  +x =kx+ m
(4x3+ 2bx+ 1= k

Нас интересует, когда эта система имеет ровно 2  корня. Заметим, что система эквивалентна

(
{ x4 +bx2 = (k − 1)x+ m
( 4x3+ 2bx= k− 1

То есть должна существовать прямая y =(k− 1)x +m  , которая касается графика y = x4+ bx2  .

При b≥ 0  ее производная 4x3+ 2bx  монотонная функция, а значит, 4x3+ 2bx= k− 1  имеет не более одного решения, тогда и вся система имеет не более одного решения.

При b< 0  можно заметить, что касательные в точках локального минимума        ∘---
x1,2 =±  −-b
         2  (нашли их как корни производной   3
4x + 2bx =0  ) имеют одинаковый коэффициент наклона 0  , а также в этих точках значение функции совпадает в силу чётности. Тогда прямая             b2   b2    b2
y =x41+ bx21 = 4-− 2-= −4  будет касательной сразу к двум точкам (только к двум точкам, потому что в точке x= 0  касательная y = 0  ; в других же точках коэффициент наклона касательной не 0  ).

Возвращаясь к изначальным обозначениям, получаем               2
k − 1 =0;m =− b
             4  . То есть искомая касательная это        2
y = x− b
      4  .

Ответ:

при b <0  , прямая y =x− b2
       4

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!