Метод оценки (метод мажорант) в параметрах
Ошибка.
Попробуйте повторить позже
Для каждого значения параметра решите уравнение
Подсказка 1
По-видимому, нормальным решением уравнения здесь и не пахнет... Когда кажется, что все печально, в голову приходит супер-мысль: вспомнить про метод оценки! У нас слева стоит сумма двух модулей и какое-то выражение. Тогда рассчитывать на решения стоит тогда, когда это выражение неположительное...
Подсказка 2
Оно неположительно, когда 0≤a≤π/12 или a=-π/12. У нас имеется сумма двух модулей, поэтому очень хочется воспользоваться неравенством |x|+|y|≥|x-y|...
Подсказка 3
В силу монотонности синуса 1/sin²2a≥1/sin²(π/6)=4 при a∈(0;π/12], а также -4tg3a<0. Поэтому модуль разности наших модулей будет больше 15. Покажите, что при a∈(0;π/12] выражение a(a+π/12)²(a-π/12) не будет превосходить 1 и доведите решение до конца!
Решение может существовать только если
поскольку иначе левая часть уравнения или не определена, или строго положительна.
При уравнение имеет вид
Следовательно, при получаем решение
Если то
Поэтому минимум функции
не меньше С другой стороны абсолютное значение выражения
на полуинтервале заведомо не больше
Поэтому при решений нет.
при
при остальных значениях решений нет.
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!