Тема Задачи с параметром

Графика. Гипербола

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела задачи с параметром
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 1#79611

(a) Изобразите на координатной плоскости множество A  , заданное неравенством

 2 2
x y < 2− xy

(b) Докажите, что любые две точки множества A  можно соединить внутри A  либо отрезком, либо ломаной из двух звеньев.

Источники: БИБН - 2024, 11.3 (см. www.unn.ru)

Показать ответ и решение

(a) Решим неравенство относительно замены t= xy

 2
t + t− 2 <0 ⇐ ⇒  t∈ (− 2,1)

То есть xy ∈(−2,1)

В случаях x,y > 0  и x,y < 0  в первой четверти получаем часть плоскости под графиком y = 1
   x  , а в третьей четверти часть плоскости над этим графиком.

В случае x<,y > 0  во второй четверти неравенству удовлетворяет часть плоскости под графиком     2
y = −x  , а в четвертой — часть плоскости над этим графиком.

PIC

(b) Приведем явный алгоритм соединения двух точек получившегося множества A  . Будем соединять любые две точки B  и D  через точку (0,0)  . Для этого надо показать, что любая прямая, соединяющая точку множества и (0,0)  , лежит в множестве. Заметим, что при приближении из B = (x0,y0)  в (0,0)  по прямой произведение xy  по модулю уменьшается, а значит, если точка B  из множества, то и прямая из нее в (0,0)  тоже. Тем самым показали, что соединять B  и D  можно соединением B  с (0,0)  и D  c (0,0).

Ответ:

Ошибка.
Попробуйте повторить позже

Задача 2#66210

Найти все значения параметра t  , при которых система

{  x2 +y2 = 6t
   xy =t2− 4

имеет ровно два решения.

Показать ответ и решение

Первое решение.

Пусть (x0,y0)− решение данной системы. Предположим, что x0 ⁄= y0,x0 ⁄= −y0,  тогда (y0,x0)− тоже решение системы. Кроме того, так как хотя бы одно из чисел x0,y0  не равно 0  (иначе бы x0 =y0 =0),  то возникают дополнительные пары (−x0,−y0),(−y0,− x0).  Но ведь должно же быть два решения, значит, x0 = y0  или x0 =−y0.  Тогда разберем случаи.

1.

x0 = y0.  Получим:

{
  2x20 =6t,
  x20 = t2− 4.

Значит,

     2
3t= t − 4,

t2− 3t− 4= 0,

t= −1;4.
2.

x0 = −y0.  Имеем:

{   2
  2x02 = 6t,2
  −x0 =t − 4.

Значит,

−3t= t2 − 4

 2
t + 3t− 4= 0

t= 1;− 4.

Заметим, что нет гарантии того, что найденные значения t  будут подходить под условие задачи, так как мы нашли t,  при условии, что пара вида (x0,x0)  будет решением. Теперь проверим полученные значения t.

1.

t= −1;−4.  Тогда x2+ y2 <0.  Но x2+ y2 ≥0,  значит, такое t  не подходит.

2.

t= 4.  Система принимает вид:

{ x2 +y2 = 24
  xy =12

Заметим, что из системы следует, что      2   2       2
(x− y) =x − 2xy+ y =24− 2⋅12= 0.  Значит, x =y.  Тогда 2
x =12.  Откуда имеет две пары   √- √ -    √-   √-
(2 3,2 3);(−2 3,−2 3).  Значит, такое значение t  нам подходит.

3.

t= 1.  Система принимает вид:

{
  x2+ y2 =6
  xy = −3

Заметим, что из системы следует, что (x+ y)2 =x2+ 2xy+ y2 =6 − 2⋅3= 0.  Значит, x= −y.  Тогда x2 = 3.  Откуда имеет две пары (√3,−√3-);(− √3,√3).  Значит, такое значение t  нам подходит.

Второе решение.
Решим задачу графически. Первое уравнение задает окружность с центром в начале координат и радиусом √ --
  6t  или пустое множество (при t< 0).  Значит t≥ 0.  Второе уравнение задает гиперболу, либо совокупность прямых x= 0,y =0 при t= −2;2.  Тогда будет ровно 2  решения, когда окружность касается гиперболы, то есть расстояние от начала координат до графика второго уравнения будет равно √--
 6t.

PIC

Пусть (a,b)  лежит на гиперболе, тогда

a⋅b= t2− 4.

Квадрат расстояния от начала координат до этой точки равно:

a2+ b2 = a2 + (t2− 4)2= (a− |t2− 4|)2+2|t2− 4|.
              a2          a

Тогда расстояние от начала координат до графика второго уравнения (наименьшее расстояние от начала координат до точки на графике второго уравнения) будет равно ∘ ------
  2|t2− 4|.  Имеем:

  ------
∘ 2|t2− 4|= √6t

  2
2|t − 4|= 6t

|t2− 4|=3t

[ t2− 4= 3t
  t2− 4= −3t

[
  t2− 3t− 4 =0
  t2+ 3t− 4 =0

[ t= ±1
 t= ±4

Так как t≥ 0,  то t∈{1;4}.

Ответ:

 1;4

Ошибка.
Попробуйте повторить позже

Задача 3#31979

Найдите все значения параметра a  , при каждом из которых уравнение

1   ||1   ||
2ax+||x +2||= 2a

имеет хотя бы один корень.

Показать ответ и решение

Рассмотрим два графика y = ||2+ 1||
      x — гипербола с отражением, а также y = − ax+ 2a
     2  — пучок, проходящий через точку (4,0)  .

PIC

Заметим, что при a <0  прямые будут пересекать асимптоту y = 2  гиперболы, потому пересекут и саму гиперболу. Если же a≥ 0  , то общая точка у прямых будет с отражённой частью гиперболы. То есть решение существует при любом a.

Ответ:

 a ∈ℝ

Ошибка.
Попробуйте повторить позже

Задача 4#70778

Найдите все пары чисел (a;b)  такие, что неравенство

4x-− 3          2
2x − 2 ≥ax +b≥ 8x − 34x+ 30

выполнено для всех x  на промежутке (1;3].

Источники: Физтех-2023, 11.6 (см. olymp.mipt.ru)

Показать ответ и решение

Рассмотрим второе неравенство. Обозначим

       2
h(x)= 8x − 34x+ 30

График - парабола с ветвями вверх. На концах данного в условии промежутка имеем h(1)= 4,h(3)= 0.  Так как неравенство должно выполняться на всём промежутке, то точки M (1;4)  и N(3;0)  могут располагаться на прямой y = ax +b  или ниже неё. Отсюда самое "низкое"расположение этой прямой (на указанном промежутке) есть прямая MN  . Составляя её уравнение по двум точкам, имеем y =− 2x +6  (назовём эту прямую ℓ).

График левой части неравенства - гипербола

      4x− 3
g(x)= 2x− 2

Заметим, что она касается прямой ℓ  в точке, принадлежащей промежутку (1;3]  . Действительно, уравнение

4x− 3
2x−-2 = −2x+ 6

имеет единственное решение x = 32.  При этом

                 ( )
g′(x)= − --2---,g′ 3  =− 2
        (2x− 2)2    2

Т.е. угловой коэффициент прямой ℓ  совпадает с производной функции y = g(x)  в их общей точке.

PIC

Несложно видеть, что на данном промежутке прямая ℓ  находится ниже гиперболы. Любая прямая, расположенная “выше” прямой ℓ  пересекается с гиперболой, и потому не удовлетворяет условию.

Итак, ℓ  — единственная возможная прямая, удовлетворяющая условию; следовательно, a =− 2  , b=6.

Ответ:

 a =− 2,b= 6

Ошибка.
Попробуйте повторить позже

Задача 5#74504

Найдите все значения параметра a,  при которых система

({ (ay− ax+2)(4y − 3|x − a|− x+ 5a)= 0
     (              )
(     logax2+ logay2− 2log2 a2 =8

имеет шесть различных решений.

Источники: ШВБ-2022, (см. olymp.bmstu.ru)

Показать ответ и решение

Упростим второе уравнение системы:

(    2      2  )    2                   22
 logax +logay − 2 log2a = 8⇔ a >0,a⁄= 1,logaxy =2+ 4loga2,|xy|=4a

⌊ {  ay − ax+ 2= 0           ⌊ { y =x −-2
||    |xy|=4a,a> 0,a ⁄=1        ||   |xy|= 4aa,a> 0,a⁄= 1
|| {                       ⇔ || {
|⌈    4y − 3|x − a|− x+ 5a =0   |⌈   y = 34|x− a|+ x4 − 5a4
     |xy|=4a,a> 0,a ⁄=1            |xy|= 4a,a> 0,a⁄= 1

I.

{
       y = x− 2∕a
  |xy|= 4a, a> 0,a⁄= 1.

1) Система имеет 2 различных решения, если

2   √-     1
a < 4 a,a> √34-,a ⁄=1

Найдем эти решения:

x −-2= 4a,x2− 2x− 4a =0,
   a   x      a

         √------          √------
x   = 1±--1+-4a3,y   = −1±--1+-4a3
 1∕2      a      1∕2        a

2) Система имеет 3 различных решения, если

2   √ -     -1-
a = 4 a, a= √34-

Найдем эти решения:

         √-----3          √-----3
x1∕2 = 1±-1+-4a-,y1∕2 = −1±--1+-4a-
          a                a

    √ -      √-
x3 = 2 a,y3 = −2 a

3) Система имеет 4 различных решения, если

2> 4√a, 0 <a < 1√--
a              34

Найдем эти решения:

   2  4a    2  2
x− a =-x ⇒ x − ax− 4a =0

         √-----3          √-----3
x1∕2 = 1±-1+-4a-,y1∕2 = −1±--1+-4a-
          a                a

x− 2 =− 4a⇒ x2− 2x +4a= 0
   a    x       a

         √------          √------
x3∕4 = 1±-1−-4a3,y3∕4 = −1±--1−-4a3
          a                a

PIC

II.

{
  y = 3|x − a|∕4 +x∕4− 5a∕4
   |xy|=4a, a >0,a⁄= 1

y = 3|x− a|∕4+ x∕4− 5a∕4,  при x≥ a  имеем y =x − 2a,  при x≤ a  имеем     x+a
y = − 2 .

1) Система имеет 2 различных решения, если

    √-
2a <4 a,a< 4,a⁄= 1

Найдем эти решения:

       4a    2
x − 2a= x ⇒ x − 2ax− 4a= 0

       ∘------        ∘ ------
x1 = a+ a2+ 4a,y1 = −a+  a2+4a

 x+ a    4a
−--2- =− x-⇒ x2+ ax− 8a =0

        √ -------        √-------
x2 = −-a−-a2+32a,y2 = −a+-a2+-32a
          2               4

PIC

2) Система имеет 3 различных решения, если

    √ -
2a= 4 a,a =4

Найдем эти решения:

       ∘------        ∘ ------
x1 = a+ a2+ 4a,y1 = −a+  a2+4a

        √ -2-----        √-2-----
x2 = −-a−-a-+32a,y2 = −a+-a-+-32a
          2               4

x3 = 2√a,y3 = −2√a

3) Найдем значение параметра a> 0,  при котором прямая y = − x+2a  будет касаться графика гиперболы y = 4xa.

− x+-a= 4a ⇒ x2 +ax+ 8a= 0
   2     x

D= a(a− 32)= 0,a =32.  Тогда при 4< a <32  система будет иметь 4 решения:

       ∘-2----        ∘ -2----
x1 = a+ a + 4a,y1 = −a+  a +4a

           -------           -------
     −-a±√-a2+32a      −-a∓√-a2+32a
x2∕3 =      2     ,y2∕3 =      4

Найдем четвертое решение:

        4a 2
x− 2a =− x-,x  − 2ax+ 4a= 0

       ∘------        ∘ ------
x4 = a+ a2− 4a,y4 = −a+  a2− 4a

4) При a= 32  система будет иметь 5 различных решений:

       ∘------        ∘ ------
x1 = a+ a2+ 4a,y1 = −a+  a2+4a

         √ -------         √ -------
x2∕3 = −-a±-a2+32a,y2∕3 = −-a∓-a2+32a
           2                 4

x = a+ ∘a2−-4a,y = −a+ ∘a2-− 4a
 4             4

x5 =− a∕2,y5 = −a∕4

5) Система имеет 6 различных решений при a> 32  :

        ------          ------
x1 = a+ ∘a2+ 4a,y1 = −a+ ∘ a2+4a

     − a±√a2-+32a-     − a∓√a2-+32a-
x2∕3 =------2-----,y2∕3 =------4-----

       ∘------        ∘ ------
x4 = a+ a2− 4a,y4 = −a+  a2− 4a

     − a±√a2-− 32a     − a∓√a2-− 32a
x5∕6 =------2-----,y5∕6 =------4-----

PIC

PIC

Возможны следующие случаи совпадения решений в I и II случаях:

1) x− 2a = x− 2a,a= 1,  в этом случае нет решений;

2) прямые y = x− 2a,y = − x+2a  и гипербола y = 4xa  пересекаются в одной точке, но этот случай возможен при a > 32,  и в этом случае будет 7 решений.

Ответ:

(0;√1-)∪(4;32)
   34

Ошибка.
Попробуйте повторить позже

Задача 6#41247

Найдите все значения параметра a  , при каждом из которых уравнение

∘ -----2---
( 6x− x − 4 +a− 2)((a− 2)x − 3a+ 4)=0

имеет два различных действительных корня.

Показать ответ и решение

Произведение двух множителей равно нулю, если хотя бы один из множителей равен нулю, а второй при этом не теряет смысла.

Первая скобка равна нулю, если

∘ ---------                         2          2            2      2
  6x− x2 − 4= 2− a ⇐⇒   2− a≥ 0 и 6x − x − 4= (a − 2) ⇐⇒ (x − 3) +(a− 2)= 5 и a≤ 2

Вторая скобка равна нулю, если a(x− 3)− 2(x − 2)= 0 ⇐⇒   a= -2-+ 2.
                           x−3  Переход с делением равносильный, так как x= 3  не обращает уравнение в тождество.

Первое уравнение задает полуокружность с центром в точке (3;2)  , а второе - гиперболу с двумя асимптотами x =3  и y = 2  (см. рисунок ниже). К тому же не стоит забывать про ОДЗ:      2               √-    √-
6x − x − 4≥ 0=⇒ x∈ [3 − 5;3+ 5]  .

PIC

В итоге получаем, что исходное уравнение имеет ровно два решения тогда и только тогда, когда прямая y = a  пересекает полуокружность и гиперболу ровно в двух точках в полосе     -         -
3− √5≤ x≤ 3+ √5  . Из графика видно, что возможны три случая: прямая касается полуокружности (то есть проходит через точку D )  ; прямая проходит через одну из точек пересечения полуокружности с гиперболой (то есть через точку A  или B)  ; прямая лежит строго выше прямой проходящей через точку C  и не строго ниже прямой y =2  . Рассмотрим все эти три случая I) Найдем ординату точки D  :

y = 2− ∘6x-− x2−-4= 2− ∘6⋅3−-32−-4= 2− √5.

II) Найдем ординату точек A  и B  :

(
|{ (x− 3)2+ (y− 2)2 = 5,   { (y− 2)4− 5(y − 2)2+ 4=0,
| (x− 3)(y− 2)= 2,      =⇒   y ≤2
( y ≤ 2

Раскладываем первое уравнение на множители или решаем как биквадратное

{
  (y− 4)y(y− 3)(y − 1)= 0, =⇒ y = 0 или y = 1.
  y ≤ 2

III) Найдем ординату точки C  :                     √-
(x − 3)(y − 2)= 2=⇒ ((3 − 5)− 3)(y− 2)=2 =⇒           2
=⇒ y =2 −√5-  . Итак, получаем такие значения параметра

      √ -          (    2   ]
a∈ {2 −  5} ∪{0}∪{1}∪  2− √-;2 .
                         5
Ответ:

 {2− √5}∪ {0}∪ {1} ∪(2− √2;2]
                      5

Рулетка
Вы можете получить скидку в рулетке!