Тема . Задачи с параметром

Графика. Функции с модулем: галочка, корыто и другие

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела задачи с параметром
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#90689

При каких значениях параметра a  уравнение

|x − 3|+ |x − 2|= a

имеет бесконечно много решений?

Подсказки к задаче

Подсказка 1

Смотрим на левую часть уравнения: узнаём корыто, да ещё и с плоским дном, и радостно бежим рисовать его на графике (конечно, представив его как кусочно-заданную функцию).

Подсказка 2

Смотрим на правую часть графика и ещё больше радуемся, там только один параметр, а значит мы получим обычную горизонтальную прямую (1).

Подсказка 3

Теперь дело осталось за малым: смотрим, как движется наша прямая и хитро подмечаем, что бесконечное количество решений возможно только если прямая (1) совпадает с дном корыта. Если прямая (1) ниже дна – нет решений, выше – только два решения.

Подсказка 4

Мы знаем, какая прямая задаёт его дно: наш ответ готов!

Показать ответ и решение

Рассмотрим уравнение левой части y = |x − 3|+ |x − 2|,  раскроем модули и представим ее в кусочном виде:

   (|
   ||{ 5− 2x,  x≤ 2
y = | 1,     2< x< 3
   ||(
     2x − 5,  x≥ 3

Это «корыто» с углами в точках (2;y(2))= (2;1)  и (3;y(3))= (3;1).  Построим его график.

PIC

Уравнение правой части y = a  задает произвольную горизонтальную прямую. Единственный случай, в котором эта прямая имеет с корытом бесконечное количество точек пересечения, достигается при a= 1,  когда горизонтальная прямая содержит отрезок дна корыта.

Ответ:

a ∈{1}

Критерии оценки

Содержание критерия

Балл

Обоснованно получен верный ответ

4

Недостаточное обоснование построения

3

Верно найдено значение a =1,  но при этом нет обоснования нахождения значения параметра a

2

Верно сведено к исследованию графически или аналитически, при этом построение обосновано

1

Решение не соответствует ни одному из критериев, перечисленных выше

0

Максимальный балл

4

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!