Графика в xOa (параметр как вторая неизвестная)
Ошибка.
Попробуйте повторить позже
Найдите, при каких значениях параметра а система уравнений
имеет единственное решение.
Источники:
Подсказка 1
Какие у нас стандартные методы решения системы? Сложить, перемножить, выразить. Попробуем первый способ. Ого, ушла а-шка, и более того, наше выражение разложилось на множители. Значит, либо x = y, либо x + y + 1 = 0. Чему теперь равносильно условие на одно решение, если х линейно выразился через у?
Подсказка 2
Тому, что суммарно, при подстановке вместо y — х и -(x + 1), во второе (или первое, это не так важно) уравнение системы, получалось ровно 1 решение. Как нам этого добиться?
Подсказка 3
Верно, посчитаем дискриминанты. Один из них должен быть равен нулю, а второй меньше нуля (так как общих корней у уравнений нет)
Первое решение.
После сложения уравнений системы получим
Получаем, что система из условия равносильна
в силу линейной связи между одно решение должна иметь совокупность
Дискриминант первого уравнения равен у второго же он меньше: Поэтому наличие решений у второго уравнения сразу влечёт за собой наличие решений у первого уравнения. Значит, для единственности решения необходимо и достаточно равенства нулю первого дискриминанта (у второго уравнения при таком значении не будет корней):
Второе решение.
Заметим, что система симметрична относительно замены на . То есть если есть решение , то решением также будет пара — решений четное количество. Поэтому, чтобы решение было единственным, необходимо (но не достаточно), чтобы среди решений было
Для единственности решения этого квадратного уравнения его дискриминант должен быть равен нулю:
При таком значении параметра получаем систему
Вычитая, получаем
Единственное решение уравнения — это пара . Такая пара является решением системы, поэтому это единственное и такое подходит.
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!