Тема . Задачи с параметром

Графика в xOa (параметр как вторая неизвестная)

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела задачи с параметром
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#79185

Найдите, при каких значениях параметра а система уравнений

{ x− y2− a =0
  x2− y+a =0

имеет единственное решение.

Источники: Физтех - 2009, 11.6 (см. olymp.mipt.ru)

Подсказки к задаче

Подсказка 1

Какие у нас стандартные методы решения системы? Сложить, перемножить, выразить. Попробуем первый способ. Ого, ушла а-шка, и более того, наше выражение разложилось на множители. Значит, либо x = y, либо x + y + 1 = 0. Чему теперь равносильно условие на одно решение, если х линейно выразился через у?

Подсказка 2

Тому, что суммарно, при подстановке вместо y — х и -(x + 1), во второе (или первое, это не так важно) уравнение системы, получалось ровно 1 решение. Как нам этого добиться?

Подсказка 3

Верно, посчитаем дискриминанты. Один из них должен быть равен нулю, а второй меньше нуля (так как общих корней у уравнений нет)

Показать ответ и решение

Первое решение.

После сложения уравнений системы получим

 2   2
x  − y + x− y = 0

x= y или x+y +1 =0

Получаем, что система из условия равносильна

⌊ { y = x
||   x2− x+a =0
||⌈ { y = −1− x
    x2+ x+1 +a =0

в силу линейной связи между x,y  одно решение должна иметь совокупность

[
  x2− x+ a= 0
  x2+ x+ 1+ a= 0

Дискриминант первого уравнения равен 1− 4a,  у второго же он меньше: 1 − 4a− 4.  Поэтому наличие решений у второго уравнения сразу влечёт за собой наличие решений у первого уравнения. Значит, для единственности решения необходимо и достаточно равенства нулю первого дискриминанта (у второго уравнения при таком значении a  не будет корней):

1− 4a =0

Второе решение.

Заметим, что система симметрична относительно замены (x,y)  на (y,x)  . То есть если есть решение (x0,y0)  , то решением также будет пара (y0,x0)  — решений четное количество. Поэтому, чтобы решение было единственным, необходимо (но не достаточно), чтобы среди решений было (x,x):

 2
x − x+ a= 0

Для единственности решения этого квадратного уравнения его дискриминант должен быть равен нулю:

1− 4a =0

При таком значении параметра получаем систему

{  x− y2 − 1 = 0
   x2− y +4 1 = 0
         4

Вычитая, получаем

(   1)2  (   1)2
 x− 2  +  y− 2   =0

Единственное решение уравнения — это пара (11)
 2;2 . Такая пара является решением системы, поэтому это единственное и такое a  подходит.

Ответ:

 1
4

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!