Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела планиметрия
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#63740

Дана трапеция ABCD  с основаниями AD = 9,BC = 2  и боковыми сторонами AB =5,CD = 3√2-  . Точка P  на прямой BC  такова, что периметр треугольника AP D  наименьший из возможных. Найдите этот периметр.

Источники: ОММО-2023, номер 4 (см. olympiads.mccme.ru)

Показать ответ и решение

PIC

Первое решение.

Воспользуемся следующим утверждением, которое наиболее известно как «принцип наименьшего времени Ферма» в физике:

Для данных точек A,B  и данной прямой ℓ  из всех точек L ∈ ℓ  сумма AL +BL  будет минимальной, когда углы между прямыми AL  и ℓ  и BL  и ℓ  будут равны.

Тогда для искомой точки P  на прямой BC  должно выполняться равенство ∠XP A = ∠YPD  (точки X  и Y  - где-то «далеко» на прямой BC )  . Поскольку BC ∥AD  , то

∠P AD =∠XP A = ∠YPD = ∠PDA

т.е. треугольник PAD  - равнобедренный. Значит, нам достаточно найти периметр равнобедренного треугольника PAD  , где P  - точка на прямой BC  .

По теореме Пифагора этот периметр равен

     ∘---------
9+ 2⋅ ( 9)2+ h2 = 9+∘81-+-4h2
        2

где h  - расстояние между прямыми AD  и BC  , т.е. высота трапеции.

Найти высоту трапеции можно разными способами. Например, проведём через точку B  , прямую, параллельную CD  , до пересечения с основанием AD  в точке K  . Тогда искомая высота - это высота из вершины B  в треугольнике ABK  . Поскольку BCDK − параллелограмм, то           √ -
BK = CD =3  2  , AK  =AD − DK = AD − BC = 9− 2= 7  .

Итого, нам достаточно найти длину высоты на сторону длины 7 в треугольнике со сторонами 5 ,   √-
7,3 2  . По формуле площади и формуле Герона имеем

 2  2     2         √-        √-       √ -        √ -
4h  ⋅7 = 16S = (5 +7+ 3 2)(5+ 7− 3 2)(5− 7+ 3 2)(−5+ 7+ 3 2)

откуда

          √-      √-      √ -    √ -   (122− (3√2-)2)((3√2)2 − 22)
4h2 = (12+3-2)(12-− 3-2)7(−2-2+3-2)(2+3-2) = ----------72----------= 36

и окончательный ответ    √-------     √---
9 + 81+ 4h2 = 9+ 117  .

Второе решение.

Также, как и в первом решении, найдём высоту трапеции. Покажем здесь, как можно это было сделать по-другому. Опустим высоты BE  и CF  трапеции. Обозначим их длины через h  , длину отрезка AE  обозначим через ℓ  . Поскольку EF =BC  =2  , для F D  получим FD = 7− ℓ  . Из прямоугольных треугольников ABE  и CDF  по теореме Пифагора получим AB2 = BE2 +AE2  и CD2 = CF2 +DF 2

Подставив в эти равенства известные длины, получим систему уравнений

{  52 =h2+ ℓ2
   18 =h2+ (7− ℓ)2

Вычитая из первого равенства второе, получим (ℓ+ (7 − ℓ))(ℓ− (7− ℓ))= 7  , откуда ℓ =4  . Тогда h= 3,FD = 3  .

Рассмотрим треугольник APD  . Обозначим BP = x  , тогда PC =2− x  (здесь и далее все расстояния со знаком, т.е. могут быть отрицательные). Опустим высоту PQ  . Тогда треугольник AP Q  прямоугольный и по теореме Пифагора

                 ∘ ----------
AP = ∘AQ2-+-QP2-=  (4+x)2+ 32.

Аналогично, из прямоугольного треугольника DPQ

    ∘ ----------
DP =  (5− x)2+ 32

Тогда периметр треугольника APD  равен

         ∘----------  ∘----------
P (x)= 9+  (4+ x)2+ 32+  (5− x)2+ 32

Найдём производную этой функции:

P′(x)= ∘---4+-x----− ∘--5−-x----.
        (4 +x)2+32    (5− x)2+ 32

Из уравнения   ′
P (x)=0  получаем

      (         )        (         )
(4+ x)2(5− x)2+ 32 = (5− x)2(4+ x)2+ 32

откуда      2       2    1
(5− x) = (4+x) ,x= 2  . Несложно видеть, что    1
x= 2  именно точка минимума, откуда минимальный периметр равен   (1)    √ ---
P  2 = 9+  117  .

Ответ:

 9+ √117

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!