Экстремальные задачи в планиметрии
Ошибка.
Попробуйте повторить позже
Бумажный квадрат площади 17 согнули по прямой, проходящей через его центр, после чего соприкасающиеся части склеили. Найдите максимально возможную площадь получившейся бумажной фигуры.
Источники:
Обозначим сторону квадрата через Пусть прямая отсекает от стороны квадрата
отрезок
Найдём
.
Обозначим . Поскольку из треугольника
(здесь
это проекция точки
на основание
)
находим
, то
Следовательно катеты прямоугольных треугольников равны и
. Откуда искомая площадь равна
С помощью производной можно получить, что максимум функции
достигается при , что соответствует углу
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!